Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Int J Nanomedicine ; 19: 3611-3622, 2024.
Article in English | MEDLINE | ID: mdl-38660022

ABSTRACT

Background: Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods: In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results: The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion: Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.


Subject(s)
Biological Availability , Carbon , Paeonia , Particle Size , Rats, Sprague-Dawley , Solubility , Xanthones , Xanthones/pharmacokinetics , Xanthones/chemistry , Xanthones/administration & dosage , Animals , Carbon/chemistry , Carbon/pharmacokinetics , Male , Rats , Paeonia/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Quantum Dots/chemistry , Quantum Dots/toxicity , Cell Line , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Cell Survival/drug effects
2.
J Food Sci ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685879

ABSTRACT

Ginger (Zingiber officinale Rosc.) possesses a rich nutritional profile, making it a valuable ingredient for a wide range of culinary applications. After removing its outer skin, ginger can be effectively utilized in the production of pickles and other processed food products. However, following scraping, ginger undergoes a series of physiological and biochemical changes during storage, which can impact its subsequent development and utilization in food. Thus, the current study aimed to investigate the browning mechanism of scraped ginger using non-targeted metabolomics and transcriptomics. The findings revealed 149 shared differential metabolites and 639 shared differential genes among freshly scraped ginger, ginger browned for 5 days, and ginger browned for 15 days. These metabolites and genes are primarily enriched in stilbenes, diarylheptane, and gingerol biosynthesis, phenylpropanoid biosynthesis, and tyrosine metabolism. Through the combined regulation of these pathways, the levels of phenolic components (such as chlorogenic acid and ferulic acid) and the ginger indicator component (6-gingerol) decreased, whereas promoting an increase in the content of coniferaldehyde and curcumin. Additionally, the activities of polyphenol oxidase (PPO) and peroxidase (POD) were significantly increased (p-adjust <0.05). This study hypothesized that chlorogenic and ferulic acid undergo polymerization under the catalysis of PPO and POD, thereby exacerbating the lignification of scraped ginger. These findings offer a theoretical foundation for understanding the browning mechanism of ginger after scraping. PRACTICAL APPLICATION: Ginger's quality and nutrition can change when its skin is removed. This happens due to physical and biochemical reactions during scraping. The browning that occurs affects both the taste and health benefits of ginger, we can better understand how to prevent browning and maintain ginger's quality. This research sheds light on improving ginger processing techniques for better products.

3.
Nat Prod Res ; : 1-6, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226496

ABSTRACT

Two new sesquiterpene glycosides, 8α,12,15ß-trihydroxycopacamphan-15-O-ß-D-glucopyranoside (1) and dendrobiumane C-11-O-ß-D-glucopyranoside (2), along with three known terpenoids (3-5) were isolated from the aerial stems of Dendrobium henanense. Their structures were elucidated based on NMR-spectroscopic and HR-MS analyses. All compounds could reduce the levels of NO, TNF-α and IL-1ß in LPS-induced RAW264.7 cells with IC50 values ranging from 10.37 to 34.55 µΜ.

4.
Gland Surg ; 12(7): 974-981, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37727332

ABSTRACT

We have successfully carried out single-hole inflator-free endoscopic thyroidectomy through a submental approach, which has the advantages of less trauma, fewer complications, and hidden incisions. However, for patients with submandibular fat accumulation, submental incisions are not easy to hide, which directly affects the cosmetic effect. We developed a new surgical strategy "submandibular suction lipectomy and single-hole inflator-free endoscopic thyroidectomy with a submental approach" for these patients. We initially used submandibular suction lipectomy to reduce the accumulation of submandibular fat and obvious fat protrusion and, thus, restore the normal depression, placing the submental incision back where it is hidden in the submental shadow. Subsequentially, we began to use single-hole inflator-free endoscopic thyroidectomy with a submental approach. We aimed to explore the feasibility and cosmetic effect of this method for the treatment of thyroid disease patients with submandibular fat accumulation. The average operation time was 4.2 hours; and the average hospitalization time was 4.75 days. There were no postoperative complications, such as hoarseness, low calcium, hand and foot numbness, etc., and no special complications and no recurrence or metastasis seen in the 6-month follow-up examination. The aesthetic satisfaction survey results of patients half a year after surgery were satisfactory and above. For thyroid cancer patients with submandibular fat accumulation, this method not only hides the surgical incision in the neck but also meets the patient's requirement for "submental aesthetics"; thus it has good application prospects. It should be pointed out that the current findings are preliminary results, based on data from only four patients.

5.
Nat Prod Res ; : 1-7, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37154381

ABSTRACT

Five isocoumarin derivatives including three new compounds, aspermarolides A-C (1-3), and two known analogues, 8-methoxyldiaporthin (4) and diaporthin (5) were obtained from the culture extract of Aspergillus flavus CPCC 400810. The structures of these compounds were elucidated by spectroscopic methods. The double bond geometry of 1 and 2 were assigned by the coupling constants. The absolute configuration of 3 was determined by electronic circular dichroism experiment. All compounds showed no cytotoxic activities against the two human cancer cells HepG2 and Hela.

6.
Plant Dis ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37026627

ABSTRACT

Peony (Paeonia suffruticosa Andr.) is a perennial plant of Ranunculaceae. Its root bark (Danpi in Chinese) is a traditional Chinese medicine, which has the effects of clearing heat and cooling blood, promoting blood circulation to resolve blood stasis. Peony is mainly planted in the provinces of Anhui, Gansu, Henan and Shandong. Peony is also called Fengdan in the Fenghuang Mountain of Tongling, Anhui Province. In November 2021, a root rot-like disease was observed on the root of peony in several fields located in Tongling county, Anhui Province, China (118°0'51" N, 30°48'11" E). Approximately 20-40% of the peony plants were affected in the fields. The roots of the diseased plants were rotten and blackened, the bark of the roots was detached, and the leaves were withered, causing the whole plants to die. To isolate the pathogen, the symptomatic roots were sampled, and small pieces (5 × 5 mm) of diseased tissues were surface sterilized with 0.5% NaClO solution and 75% ethanol for 5 min, rinsed with sterile distilled water three times, and finally incubated on potato dextrose agar (PDA) at 28°C in the dark for 7 days. A total of 16 isolates were obtained from the infected tissues. Among isolates, six isolates were morphologically similar to B4. Colonies were passaged multiple times on fresh PDA medium, and pure isolate B4 exhibiting cinnamon-to-honey coloration on PDA with pale yellow aerial hyphae, was then selected. Microscopic observations revealed that microconidia were straight to curved, ellipsoid or subcylindrical, and ranged from 7.14 to 14.29 × 2.85 to 5.00 µm (n = 20). The morphological characteristics were similar to the description of Pleiocarpon algeriense by Aigoun-Mouhous et al. (2019). To further identify the taxonomic status of B4 strain, three genes of the internal transcribed spacer (ITS) region of rDNA, beta-tubulin (TUB2), and the RNA polymerase II second subunit (RPB2) were respectively amplified and sequenced using primers ITS1/ITS4 (White et al. 1990), T1/Bt-2b (O'Donnell and Cigelnik 1997), and 5F2/7cR (O'Donnell et al. 2007). Sequences for the isolate B4 were deposited in GenBenk (OP810684, ITS; OP882301, TUB2; OP863337, RPB2). BLAST analysis showed the ITS, TUB2, RPB2 sequences of B4 were 99.80% (505/506), 99.51% (609/612) and 100.00% (854/854) homology with those of P. algeriense Di3A-AP52 (MT613337, ITS; MT597145, TUB2; MT635004, RPB2). A phylogenetic tree was built using MEGA11 based on sequences of three genes showing that B4 strain was closely clustered with reference strain of P. algeriense, which has not been reported in peony in China. The pathogenicity test of the isolates was performed by inoculating 50 mL of conidial suspension (1 × 108 conidia/mL) on the roots of ten healthy peonies, ten peonies inoculated with 50 mL of sterile water were used as a control group. After one-month, typical symptoms of root rot appeared on the inoculated plants and the control plants were asymptomatic. The fungus (P. algeriense) was reisolated from the diseased roots and identified by sequencing of ITS gene, conforming to Koch's postulates. Pleiocarpon algeriense has been reported to cause stem and crown rot in avocado (Aiello et al. 2020). To the best of our knowledge, this is the first report of P. algeriense causing root rot in peony. Control methods of P. algeriense on peony fields will be studied in-depth in the future.

7.
Article in English | MEDLINE | ID: mdl-36652816

ABSTRACT

Kidney yang deficiency syndrome (KYDS) is a classic syndrome of traditional Chinese medicine (TCM). The salt-processed product of Semen Cuscuta (YP) is the monarch drug in Bushen Antai Mixture (BAM), can improve the reproductive dysfunction caused by KYDS, and the effect is better than that of raw products of Semen Cuscuta (SP). However, its mechanism is not completely clear yet. In this study, an integrated strategy combining untargeted metabolomics with microbiology was used to explore the mechanism of YP in the BAM improving KYDS. 16S rDNA gene sequencing showed that BAM containing YP (Y-BAM) had a significantly better regulatory effect on Desulfobacterota and Desulfovibrionaceae_unclassified than BAM containing SP (S-BAM). Untargeted metabolomics studies showed that Y-BAM significantly regulated 4 metabolites and 4 metabolic pathways. In addition, multi-index analysis showed that the effect of Y-BAM on arachidonic acid metabolism, tyrosine metabolism, purine metabolism, fructose and mannose metabolism and total metabolism was closer to that of the control group compared to S-BAM. The analysis of serum biochemical indexes showed that Y-BAM had more significant regulating effect on the levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) and superoxide dismutase (SOD) in serum of KYDS rats compared to S-BAM. Spearman correlation analysis showed that there was a significant correlation between intestinal microorganisms and metabolites and serum biochemical indexes. For example, Desulfovibrionaceae_unclassified was positively correlated with arachidonic acid, and negatively correlated with SOD and LH. This study suggests that YP may enhance the regulation of intestinal flora and endogenous metabolism of KYDS, so that BAM shows a better therapeutic effect on KYDS, which also reasonably explains why BAM uses Semen Cuscuta stir-baked with salt solution.


Subject(s)
Cuscuta , Yang Deficiency , Rats , Animals , Yang Deficiency/drug therapy , Research Design , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acid/therapeutic use , Seeds/metabolism , Metabolomics/methods , Kidney/metabolism , Sodium Chloride/pharmacology
8.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36678585

ABSTRACT

The Stephania tetrandra−Astragalus membranaceus herbal pair (FH) is a classic herbal pair widely used in the treatment of nephrotic syndrome (NS). The effects of Stephania tetrandra (FJ) and Astragalus membranaceus (HQ) on NS have been reported, but the mechanism of their combination on the improvement of NS are still unclear. The NS model was established by injecting adriamycin into the tail vein. FH intervention reduced the levels of serum triglyceride, total cholesterol, interleukin-6 (IL-6), blood urea nitrogen (BUN), urinary protein, and the gene expression levels of aquaporin 2 (AQP2) and arginine vasopressin (AVP) in NS rats. In addition, FH improved kidney injury in NS rats by inhibiting the expression of interleukin 13 (IL-13), phospho-signal transducers, and activators of transcription 6 (p-STAT6), Bax, cleaved-caspase3, while promoting the expression of Bcl-2. By comprehensive comparison of multiple indexes, the effects of FH on lipid metabolism, glomerular filtration rate, and inflammation were superior to that of FJ and HQ. Metabonomic studies showed that, compared with FJ and HQ, FH intervention significantly regulated tricarboxylic acid (TCA) cycle, cysteine and methionine metabolism, and alanine, aspartic acid and glutamic acid metabolism. Pearson correlation analysis showed that succinic acid and L-aspartic acid were negatively correlated with urinary protein, cystatin C (Cys C) and BUN (p < 0.05). In summary, FH could reduce renal injury and improve NS through inhibiting the IL-13/STAT6 signal pathway, regulating endogenous metabolic pathways, such as TCA cycle, and inhibiting the expression of AQP2 and AVP genes. This study provides a comprehensive strategy to reveal the mechanism of FH on the treatment of NS, and also provides a reasonable way to clarify the compatibility of traditional Chinese medicine.

9.
J Ethnopharmacol ; 302(Pt A): 115867, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36341818

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi-Yanzong-Wan (WZYZW) is a classic Chinese herbal preparation, which has a significant clinical efficacy in tonifying the kidney and benefiting the sperm, and is widely used in the treatment of oligoasthenospermia with a long history. TAp73 inhibition results in the decrease of sperm quality, but the therapeutic mechanism of WZYZW on oligoasthenospermia caused by TAp73 gene inhibition remains elusive. AIMS OF STUDY: The purpose of this study is to investigate whether TAp73 suppression leads to oligoasthenospermia and the application of WZYZW treatment in condition of TAp73 suppression. METHODOLOGY: C57BL/6 male mice were injected with Pifithrin-α (2.5 mg/kg) intraperitoneally for 30 days to induce TAp73 suppression model, with WZYZW at 1.0, 2.0 and 4.0 g/kg were administrated in parallel. The blood, testis and epididymis were collected, with organ coefficient calculated. Makler sperm counter was used to analyze the density, motility, survival and malformation rate of sperm. Apoptosis of sperm was analyzed by flow cytometry. Serum hormone levels were determined using ELISA. HE staining and transmission electron microscopy (TEM) were used to observe histopathological changes of testis in blood-testis barrier (BTB), ectoplasmic specialization (ES) and other cell junctions. Expressions of cell adhesion factors including TAp73, Integrin-α6, N-cadherin, Nectin-2 and Occludin were determined by RT-PCR and western blotting. RESULTS: Compared to control mice, TAp73 inhibition dramatically decreased the epididymal coefficient, sperm quality, and serum testosterone (T) level, while increasing apoptosis in sperm in mice. HE staining and TEM showed that the tight junction (TJ) and apical ES structure were seriously abnormal in the testis in mice with TAp73 inhibition. Additionally, the expression of Occludin protein was elevated, while that of TAp73, Integrin-α6, N-cadherin, and Nectin-2 reduced in model mice. WZYZW treatment ameliorated testicular spermatogenic dysfunctions in TAp73 suppressed mice, restoring the decreased sperm quality, serum T level and testicular histopathological changes of TJ and ES, as well as decreasing sperm malformation rate and apoptosis. Moreover, WZYZW reversed the expressions of Occludin, TAp73, Integrin-α6, N-cadherin and Nectin-2 in TAp73 suppressed mice. CONCLUSIONS: By impairing spermatogenesis and maturation, TAp73 inhibition led to oligoasthenospermia in mice. WZYZW could rescue the oligoasthenospermia associated with TAp73 inhibition via affecting the dynamic remodeling of cellular junctions in testicular tissues in mice.


Subject(s)
Semen , Testis , Male , Mice , Animals , Nectins/metabolism , Occludin/metabolism , Mice, Inbred C57BL , Testis/metabolism , Spermatogenesis , Intercellular Junctions , Cadherins/genetics , Cadherins/metabolism , Integrins/metabolism
10.
J Sci Food Agric ; 103(2): 779-791, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36054707

ABSTRACT

BACKGROUND: Polygonatum cyrtonema Hua is cultivated for its edible and medical value. The steam-processed rhizome of P. cyrtonema is the main form for daily consumption and it has been used traditionally in tonics for treating various age-related disorders. The aim of our study was to compare the physicochemical properties and antioxidant activity of polysaccharides respectively extracted from crude P. Cyrtonema (PCPC), and steam-processed P. cyrtonema (PCPS), and to explore a possible underlying antioxidant mechanism. RESULTS: The PCPC with a molecular weight of 4.35 × 103 Da mainly consisted of fructose and trace amounts of glucose, whereas PCPS with 4.24 × 104 Da was composed of fructose, arabinose, glucose, xylose, mannose, galacturonic acid and glucuronic acid. The PCPC had a triple-helical conformation whereas PCPS was a random coil. Both exhibited free radicals- scavenging activity in vitro. In a mouse model of oxidative damage, PCPC or PCPS treatment significantly reversed histopathological alterations, reactive oxygen species (ROS) accumulation and the reduction of antioxidant enzyme activity. They both also promoted Nrf2 nuclear transport by decreasing Keap-1 expression and increasing HO-1 expression. Both in vitro and in vivo, PCPS exhibited more potent antioxidant activity than PCPC. CONCLUSION: Overall, the results suggest that PCPS has a stronger effect on the prevention of oxidative damage by activating Nrf2/HO-1 antioxidant signaling. This study demonstrates the role of steam-processed P. cyrtonema rhizome and provides valuable perspective for PCPS as a functional agent. © 2022 Society of Chemical Industry.


Subject(s)
Polygonatum , Mice , Animals , Polygonatum/chemistry , Galactose/adverse effects , Antioxidants/pharmacology , Antioxidants/chemistry , Steam , NF-E2-Related Factor 2/genetics , Polysaccharides/pharmacology , Polysaccharides/chemistry , Oxidative Stress , Glucose , Fructose
11.
Front Cell Infect Microbiol ; 12: 1026627, 2022.
Article in English | MEDLINE | ID: mdl-36389137

ABSTRACT

Gastrodia elata Blume was used to treat stroke and headaches caused by "Feng" for thousands of years. The present study has shown a significant effect of G. elata Blume in improving cerebral ischemia-reperfusion injury (CIRI). However, the mechanism of G. elata Blume in improving CIRI by regulating the intestinal flora has not been reported until now. This research aimed to comprehensively evaluate the mechanism of G. elata Blume in CIRI based on fecal metabolomics and 16S rDNA sequencing. The rat model with CIRI was created based on the Zea Longa method. Enzyme-linked immunosorbent assay (ELISA) was used to monitor the inflammatory factors in rat serum. Damages of brain tissues were observed using hematoxylin and eosin (H&E) staining. Cerebral infarction was observed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The balance of intestinal flora in cecal contents of rats was evaluated by high-throughput sequencing. Changes of metabolites in the intestinal flora were evaluated by fecal metabolomics through Ultra high performance liquid chromatography-orbitrap exploris-mass spectrometer (UHPLC-OE-MS). The area of brain necrosis, cerebral infarction volume, and the contents of inflammatory factors in CIRI rats can be effectively reduced after oral administration of G. elata Blume. CIRI can cause disturbances in the intestinal flora and its associated metabolites. G. elata Blume can significantly regulate the composition of the intestinal microflora. It reversed CIRI-induced changes in the levels of multiple intestinal bacteria, including Prevotellaceae, Coriobacteriaceae; Prevotella, Gamma proteobacteria unclassified, Barnesiella, Escherichia, Shigella; uncultured Shigella sp., Flavonifractor sp., Escherichia sp. enrichment culture clone NBAR004, Veillonella sp. R-32, and Lactobacillus intestinalis. The levels of metabolites in cecal contents were disturbed in rats with CIRI, including amino acid, purine, and sphingolipid metabolism. The changes in the level of biomarkers in amino acid metabolism induced by CIRI were significantly reversed after treatment with G. elata Blume. Correlation studies show that Prevotellaceae was significantly positively correlated with interleukin (IL)-6, and L. intestinalis and L-phenylalanine were negatively interrelated to IL-1ß. Beta-glycerophosphoric acid was significantly negatively interrelated to high-sensitivity C-reactive protein (hs-CRP). There were significantly negative correlations between L-phenylalanine and L. intestinalis, beta-glycerophosphoric acid and Prevotellaceae. G. elata Blume protected against CIRI, which may be related to improved intestinal microflora composition and metabolism, resulting in decreased inflammation.


Subject(s)
Gastrodia , Reperfusion Injury , Rats , Animals , Gastrodia/chemistry , DNA, Ribosomal/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reperfusion Injury/metabolism , Cerebral Infarction , Amino Acids , Phenylalanine
12.
Article in English | MEDLINE | ID: mdl-36124017

ABSTRACT

Background: The fibrous roots of Anemarrhena asphodeloides Bge. (FRAAB) are byproducts of the rhizome of Anemarrhena asphodeloides. Some studies have revealed secondary metabolic small molecules in FRAAB, but there are few reports on the polysaccharides of FRAAB (PFRAAB). Aim of the Study. The present study aimed to investigate the preliminary characterization and underlying mechanism of immune stimulation of PFRAAB. Materials and Methods: The crude polysaccharide of FRAAB was obtained by hot water extraction and alcohol precipitation, and PFRAAB was purified by a diethylaminoethyl-52 (DEAE-52) cellulose chromatographic column and graphene dialysis membrane. The preliminary characterization of PFRAAB was studied by ultraviolet (UV) scanning and Fourier Transform Infrared Reflection (FTIR). The molecular weight and composition of PFRAAB were analysed by high-performance gel permeation chromatography (HPGPC) and high-performance liquid chromatography (HPLC), respectively. The immune stimulation of PFRAAB was investigated by using cyclophosphamide- (CCP-) treated mice and RAW264.7 cells. Results: A water-soluble PFRAAB was obtained with a molecular weight of 115 kDa and was mainly composed of arabinose (ara), galactose (gal), glucose (glc), and mannose (man). Compared with CCP-induced mice, PFRAAB significantly (p < 0.05 or p < 0.01) increased the spleen and thymus index, ameliorated injury to the spleen and thymus, and evaluated immunoglobulin levels. In addition, PFRAAB also increased the secretion of nitric oxide (NO), interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α), and IL-6 in RAW264.7 cells and upregulated the expression of toll-like receptor 4 (TLR4), Myd88, nuclear factor kappa-B (NF-κB) P65, p-NF-κB P65, IKB-α, and p-IKB-α. Conclusion: PFRAAB possesses immune stimulation activity and can be used as a potential resource for immune-enhancing drugs. Our present study provides a scientific basis for the comprehensive development of Anemarrhena asphodeloides medicinal plant resources.

13.
Article in English | MEDLINE | ID: mdl-35849979

ABSTRACT

Ziziphi Spinosae Semen (ZSS) is a traditional Chinese medicine used for sedation and hypnosis. Preliminary studies have shown that frying it could increase its sedative and hypnotic effects due to an increase in its chemical contents. However, the correlation between increased ZSS contents and therapeutic effects remains unclear. This study aimed to identify chemical components that change between ZSS and Fried Ziziphi Spinosae Semen (FZSS) and Q-markers related to these changed components' sedative and hypnotic effects. Differences between ZSS and FZSS were investigated using the UPLC fingerprint analysis. Components significantly different between ZSS and FZSS were screened using the UPLC-Q-TOF-MS analysis combined with a multivariate statistical method. In addition, ZSS and FZSS extracts were treated with diazepam in vitro to observe their differences in saturation competition between ZSS extract and diazepam, before and after processing, and diazepam on the GABA receptor in SD rats' brain tissue. Then, the chemical components of ZSS and FZSS that competed with diazepam to bind to the GABA receptor were identified by LC-MS/MS analysis. Finally, the binding efficiency of the different medicinal components was assessed using molecular docking technology. The results indicated significant differences in the content of various chemical components between ZSS and FZSS. Among them, the contents of adenosine, spinosin, 6'″-feruloylspinosin, jujuboside A and betulinic acid were found to be significantly increased after frying. LC-MS/MS and molecular docking analysis screened spinosin, 6'″-feruloylspinosin and betulinic acid as Q markers for the sedative and hypnotic effects of ZSS and FZSS. In summary, this study identified the changed sedative-hypnotic chemical components and Q-markers of ZSS before and after frying.


Subject(s)
Drugs, Chinese Herbal , Ziziphus , Animals , Biomarkers , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Diazepam , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Hypnotics and Sedatives/pharmacology , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley , Receptors, GABA , Seeds , Tandem Mass Spectrometry , Ziziphus/chemistry
14.
Front Mol Biosci ; 9: 818285, 2022.
Article in English | MEDLINE | ID: mdl-35433834

ABSTRACT

Huatuo Jiuxin Pills (HJP), a traditional Chinese medicine (TCM) preparation, has been widely used to treat Cardiovascular Diseases (CVDs) for more than 20 years. However, there were still gaps in the study of chemical components and potential pharmacological effects in the HJP. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE) combined with network pharmacology was used to comprehensively explore the chemical components in HJP and explore its potential active compounds and the mechanism for the treatment of CVDs. A total of 117 compounds, mainly including saponins, cholic acids, and bufadienolides, were rapidly identified and characterized. Simultaneously, the fragmentation mode and characteristic ion analysis of different types of representative compounds were carried out. Network pharmacology results showed that the more important active ingredients mainly include 5ß-hydroxybufotalin, 19 oxo-cinobufagin, bufarenogin, etc. While, the main targets were PIK3CA, MAPK1, VEGFA and so on. Importantly, HJP has therapeutic effects on CVDs by acting on endocrine resistance, PI3K-Akt signaling pathway, HIF-1 signaling pathway, etc. In addition, molecular docking results showed that the core active ingredients with higher degrees in HJP have a strong affinity with the core targets of CVDs. The current work fills the gap in the chemical substance basis of HJP, and also facilitates a better understanding of the effective components, therapeutic targets, and signaling pathways of HJP in the treatment of CVDs.

15.
J Pharm Pharmacol ; 74(6): 869-886, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35429380

ABSTRACT

OBJECTIVES: To explore gingerol's potential mechanism for treating liver cancer using network pharmacology and molecular docking technology and to conduct in-vitro experiments of human liver cancer cell HepG2 to verify important signalling pathways. METHODS: We obtained potential targets of gingerol derivatives (6-gingerol, 8-gingerol and 10-gingerol) from PubChem and SwissTargetPrediction websites and collected related targets for liver cancer with the help of GeneCards. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on key targets using the DAVID data platform and combined with Cytoscape 3.7.1 software to construct a component-target-signal pathway interaction map to study its mechanism of action. Subsequently, the components and key proteins were molecularly docked through Autodock Vina software. Finally, the important signal pathways were verified by HepG2 cell in-vitro experiments. KEY FINDINGS: A total of 318 drug targets were screened for gingerol derivatives, and 2509 gene targets related to liver cancer were collected. The Venn diagram showed that there were 104 intersection targets between gingerol derivatives and liver cancer. Module analysis results show that these intersection targets can be divided into 5 modules and 49 nodes. Bioinformatics analysis found that GO obtained 20 important functional items including cancer cell proliferation, protein kinase activity, phosphotransferase activity and kinase activity; KEGG enrichment analysis yielded a total of 20 key signal pathways including the PI3K-Akt signalling pathway. The results of molecular docking show that the binding energy of gingerol derivatives has good binding activity with PI3K and Akt. In-vitro experimental results show that gingerol derivatives and compound gingerol (compound gingerol is composed of 6-gingerol, 8-gingerol and 10-gingerol in a ratio of 7:1.5:1.5) can produce HepG2 cell proliferation inhibition, and each administration group can significantly increase the apoptosis rate of HepG2 cells and the fluorescence intensity of the nucleus and block the cell cycle in the S phase; the results of Western Blot and real-time quantitative PCR show that gingerol derivatives and compound gingerol can down-regulate the expression of Akt and p-Akt and up-regulate the expression of Bax/Bcl-2. And the effect of compound gingerol is more obvious than that of gingerol derivatives. CONCLUSIONS: The results of network pharmacology and experimental validation suggest that gingerol derivatives and compound gingerol can act against liver cancer by acting on the PI3K-Akt signalling pathway.


Subject(s)
Drugs, Chinese Herbal , Liver Neoplasms , Catechols , Drugs, Chinese Herbal/pharmacology , Fatty Alcohols , Humans , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
16.
Chin J Nat Med ; 20(4): 282-289, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35487598

ABSTRACT

Wuzi-Yanzong-Wan (WZYZW) is a classic prescription for male infertility. Our previous investigation has demonstrated that it can inhibit sperm apoptosis via affecting mitochondria, but the underlying mechanisms are unclear. The purpose of the present study was to explore the actions of WZYZW on mitochondrial permeability transition pore (mPTP) in mouse spermatocyte cell line (GC-2 cells) opened by atractyloside (ATR). At first, WZYZW-medicated serum was prepared from rats following oral administration of WZYZW for 7 days. GC-2 cells were divided into control group, model group, positive group, as well as 5%, 10%, 15% WZYZW-medicated serum group. Cyclosporine A (CsA) was used as a positive control. 50 µmol·L-1 ATR was added after drugs incubation. Cell viability was assessed using CCK-8. Apoptosis was detected using flow cytometry and TUNEL method. The opening of mPTP and mitochondrial membrane potential (MMP) were detected by Calcein AM and JC-1 fluorescent probe respectively. The mRNA and protein levels of voltage-dependent anion channel 1 (VDAC1), cyclophilin D (CypD), adenine nucleotide translocator (ANT), cytochrome C (Cyt C), caspase 3, 9 were detected by RT-PCR (real time quantity PCR) and Western blotting respectively. The results demonstrated that mPTP of GC-2 cells was opened after 24 hours of ATR treatment, resulting in decreased MMP and increased apoptosis. Pre-protection with WZYZ-medicated serum and CsA inhibited the opening of mPTP of GC-2 cells induced by ATR associated with increased MMP and decreased apoptosis. Moreover, the results of RT-qPCR and WB suggested that WZYZW-medicated serum could significantly reduce the mRNA and protein levels of VDAC1 and CypD, Caspase-3, 9 and CytC, as well as a increased ratio of Bcl/Bax. However, ANT was not significantly affected. Therefore, these findings indicated that WZYZW inhibited mitochondrial mediated apoptosis by attenuating the opening of mPTP in GC-2 cells. WZYZW-medicated serum inhibited the expressions of VDAC1 and CypD and increased the expression of Bcl-2, which affected the opening of mPTP and exerted protective and anti-apoptotic effects on GC-2 cell induced by ATR.


Subject(s)
Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Animals , Male , Mice , Rats , Atractyloside/pharmacology , Peptidyl-Prolyl Isomerase F , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , RNA, Messenger
17.
Article in English | MEDLINE | ID: mdl-34102535

ABSTRACT

The previous research of clinical big data mining showed that stir-baking Semen Cuscuta with salt solution (YP) ranked the first in the usage rate of treating abortion caused by kidney deficiency. At the same time, pharmacodynamic studies also showed that YP has better effect on improving recurrent spontaneous abortion (RSA) compared to raw products of Semen Cuscuta (SP). However, there were few studies on the biomarkers of YP improving RSA. In this study, the chemical and metabonomic profiling were used to screen the quality markers of YP on improving RSA. Firstly, a metabolomics study was carried out to select representative biomarkers of RSA. The ultra-high performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UPLC-ESI-Q-TOF-MS) technique was used to investigate the components of exogenous and endogenous in serum of rats after administrated with YP and SP. As a result, 14 differential compounds were identified between the serum of rats administrated SP and YP. Compared to SP, there was an upward trend in YP of the compounds including kaempferol-3-glucuronide, iso-kaempferol-3-glucuronide, (1S) -11-hydroxyhexadecanoic acid and 3-phenylpropionic acid. Meanwhile, there was a reducing trend in YP of the compounds including kaempferol 3-arabinofuranoside, apigenin-3-O-glucoside, hyperoside, caffeic acid-ß-D glucoside, dicaffeoylquinic acid, linoleic acid, 3,4-dicaffeoylquinic acid, caffeic acid, palmitic acid and methyl myristate. 12 biomarkers for RSA indication were identified. SP and YP have a certain effect on the endogenous biomarker. The regulation effect of YP was higher than that of SP. The main metabolic pathways included phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, fatty acid biosynthesis, sphingolipid metabolism, biosynthesis of unsaturated fatty acids. This study demonstrated a promising way to elucidate the active chemical and endogenous material basis of TCM.


Subject(s)
Cuscuta/chemistry , Drugs, Chinese Herbal , Embryo Loss/metabolism , Metabolome/drug effects , Animals , Biomarkers/blood , Chromatography, High Pressure Liquid/methods , Cooking , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Female , Rats , Rats, Wistar , Sodium Chloride/pharmacology , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
18.
RSC Adv ; 11(60): 37952-37965, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498116

ABSTRACT

Polygonatum species, including P. cyrtonema, P. kingianum, and P. sibiricum, are edible plants with medicinal purposes, which have long been consumed as food due to their high nutritional value. In this study, polysaccharides from P. cyrtonema (PCP), P. kingianum (PKP) and P. sibiricum (PSP) were obtained, and their physicochemical properties and in vitro biological activities were investigated. Our results demonstrated that PCP, PKP, and PSP consist of major fructose and minor glucose, galacturonic acid, and galactose in different molar ratios with the molecular weights of 8.5 × 103 Da, 8.7 × 103 Da, and 1.0 × 104 Da, respectively. The three polysaccharides had triple-helical structures with ß-d-Fruf, α-d-Glcp, α-d-Galp sugar residues, and an O-acetyl group, and displayed peak-shaped structures in different sizes. They also exhibited thermal, shear-thinning behavior and viscoelastic properties, and PCP presented the highest viscoelasticity. Moreover, they exerted strong free radical-scavenging abilities, and significant reducing capacity. PCP was the strongest, followed by PSP and then PKP. They significantly promoted the polarization of the M1 macrophage, with the effect of PCP ranking first. All three had similar effects on GLP-1 secretion. It is, therefore, necessary to identify the various roles of these three Polygonatum polysaccharides as functional agents based on their bioactivities and physicochemical properties.

19.
Animal Model Exp Med ; 4(4): 351-358, 2021 12.
Article in English | MEDLINE | ID: mdl-34977486

ABSTRACT

Background: Oligoasthenospermia is one of the main causes of male infertility. Researchers usually use chemical drugs to directly damage germ cells to prepare oligoasthenospermia models, which disregards the adhesion and migration between spermatogenic cells and Sertoli cells. TAp73 is a critical regulator of the adhesin of germ cell; thus, we sought to explore a novel oligoasthenospermia model based on TAp73 gene suppression. Methods: Mice in the Pifithrin-α group were injected intraperitoneally with 2.5 mg/kg Pifithrin-α (TAp73 inhibitor) daily for 30 consecutive days. Reproductive hormone levels and epididymal sperm quality, as well as the network morphology of Sertoli cells were tested. Results: Sperm density, motility, and the relative protein and mRNA expression of TAp73 and Nectin 2 were obviously decreased in the Pifithrin-α group compared with the normal control group. No significant distinction was observed in the relative mRNA and protein expression of ZO-1. Furthermore, the tight junctions (TJs) and apical ectoplasmic specialization (ES) were destroyed in the Pifithrin-α group. Conclusion: The above results indicate that we successfully established a new oligoasthenospermia mouse model. This study provides a foundation for further exploration of the roles of TAp73 genes during spermatogenesis and provides new research objects for further oligospermia research and future drug discovery.


Subject(s)
Oligospermia , Spermatogenesis , Animals , Epididymis , Male , Mice , Oligospermia/genetics , Sertoli Cells , Spermatogenesis/genetics , Spermatozoa
20.
Nat Prod Res ; 35(15): 2564-2568, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31709825

ABSTRACT

The cortex root of Paeonia ostii, is used as a traditional Chinese medicine for treating female diseases. Phytochemical investigation of the water-soluble fraction of the plant led to the isolation of two new acetoisovanillone glycosides: acetoisovanillone-3-O-ß-D-glucopyranoside (1) and 2-hydroxy-acetoisovanillone-3-O-ß-D-glucopyranoside (2). Their structures were elucidated by extensive spectroscopic methods.


Subject(s)
Glycosides/chemistry , Paeonia , Female , Glycosides/isolation & purification , Humans , Medicine, Chinese Traditional , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...